Three-Component Radical Condensations Involving Benzoylmethyl Radicals, Alkenes, and Diphenyl Disulfide

Glen A. Russell' and Shekhar V. Kulkarni

Department *of* Chemistry, Iowa State University, *Ames,* Iowa *50011*

Received October *27, 1992*

Acyl-substituted methyl radicals ($RCOCH₂$; R = H, Me, Ph), generated by photolysis of RCOCH₂-HgC1, add to alkenes, enol ethers, or vinyl sulfides to give adduct radicals that are readily trapped by PhSSPh to yield a three-component condensation product. The presence of an alkali metal carbonate is crucial in preventing side reactions resulting in the conversion of the mercurial to RCOCH3 by PhSH formed in the photolysis.

Introduction

Radical processes are becoming increasingly important in syntheses.' Formation of carbon-carbon bonds by the addition of a radical to an alkene requires an efficient product formation step to avoid losses from telomerization or radical-radical interactions. Some of the methods developed and utilized in chain reactions are atom transfers of the Kharasch-type;² the use of R_3SnH , $CH_2=CHCH_2$ - $SnR₃$ ⁴ ROC(S)SSnR₃,^{5a} silyl hydrides,⁶ thiohydroxamic esters,⁷ and other thiocarbonyl compounds,^{5b,c} RHgH,^{1a} R_3B ,⁸ or RHgX,⁹ to trap adduct radicals; electron transfer to or from adduct radicals;^{10,11} or β -elimination of adduct radicals to yield substitutive alkylation products.12 In nonchain processes adduct radicals can be trapped reductively by $SmI₂$ or $Cr(II)^{13,14}$ or oxidatively by $Mn(III).¹⁵$ However, the majority of these methods are suitable mainly

(3) (a) Walling, C.; Cooley, J. H.; Ponaras, A. A.; Racah, E. J. *J. Am. Chem. SOC.* **1966,88,5361.** (b) Stork, G.; Baine, N. H. J. *Am. Chem. SOC.,* **1982,104, 2321.**

(4) Mizuno, K.;Ikeda, M.;Toda, S.; Otsuji,Y. *J.* Am. *Chem. SOC.* **1988,** *110,* **1288.**

(5) (a) Boivin, J.; Camara, J.; Zard, S. Z. *J. Am. Chem. SOC.* **1992,114, 7909. (b)Deidue,P.;Taihan,C.;Zard,S.Z.** *J. Chem. Soc., Chem. Commun.* **1988,308.** (c) Forbes, J. E.; Zard, S. Z. *TetrahedronLett.* **1988,30,4367;** *J. Am. Chem.* **SOC. 1990,112,2034.**

(6) Ballestri, M.; Chatgilaloglu; Clark, K. B.; Griller, D.; Giese, B.; Kopping, B. J. *Org. Chem.* **1991,56, 678. (7)** (a) Barton, D. H. R.; Crick, D.; Kretzschmar, G. *TetrahedronLett.*

1984, 25, 1055; J. Chem. Soc., Perkin Trans. I 1986, 39. (b) Barton, D.
H. R.; Toga, H.; Zard, S. Z. Tetrahedron 1985, 41, 5507. (c) Barton, D.
H. R.; da Silva, E.; Zard, S. Z. J. Chem. Soc., Chem. Commun. 1988, 285.
(8) B

11, **692. (9)** Russell, G. **A.;** Jiang, W.; Hu, **S.** S.; Khanna, R. *J.* **Og.** *Chem.* **1986,** *51,* **5498.**

(10) (a) Russell, G. A.; Hu, S.; Herron, S.; Baik, W.; Ngoviwatchai, P.; Jiang, W.; Nebgen, M.; Wu, Y.-W. J. Phys. Org. Chem. 1988, 1, 299. (b)
Russell, G. A.; Baik, W.; Ngoviwatchai, P.; Kim, B. H. Acta Chem. Scand. **1990, 44, 170.**

(11) (a) Russell, G. A.; Khanna, R. K.; Guo, D. J. *Chem. Soe., Chem. Commun.* **1986,632.** (b) Russell, G. A.; Kulkarni, **S.** V.; Khanna, R. K. J. Org. Chem. **1990,55,1080.** (c) Russell, G. **A,;** Wang, K. J. *Org. Chem.* **1991,56, 3475.**

(12) (a) Kosugi, M.; Kurino, K.; Takayama, K. J. *Organomet. Chem.* 1973, 56, C11. (b) Grignon, J.; Parsystems, N. J. Organomet. Chem. 1973, 67, C11. (b) Grignon, J.; Pereyre, M. J. Organomet. Chem. 1973, 67, C33. (c) Ueno, Y.; Okawara, M. J. Am. Chem. Soc. 1979, 101, 1893.
(d) Keck, G. E **106,4622.** *(0* Baldwin, J. E.; Kelley, D. R.; Ziegler, C. B. J. *Chem. SOC., Chem. Commun.* **1984,133.** (g) Keck, G. E.; Byers, J. H. J. Org. *Chem.* **1986,** *50,* **5442.**

(13) Molander, G. A.; McKie, J. A. J. *Org. Chem.* **1992.47, 3132.**

0022-3263/93/1958-2678\$04.00/0

for the trapping of the adducts of nucleophilic radicals with external electron-deficient alkenes although many examples of Kharasch-type additions involving electrophilic radicals are known and Mn(II1) cyclizations of the adduct radicals obtained from malonate, acetoacetic ester, and related electrophilic radicals represents an important synthetic method.¹⁵ The addition of nitro- or carbonylconjugated radicals to enamines followed by electron transfer from the adduct radical to $PhCOCH₂HgCl$, $Me₂C(NO₂)₂$, or $p-O₂NC₆H₄CH₂Cl$ also occurs readily.^{11b,c}

We describe herein a method of forming carbon-carbon bonds by intermolecular addition of carbonyl-substituted radicals to electron-rich alkenes by use of PhSSPh to trap the adduct radical. Photolysis of R^1 COCH₂HgCl (R^1 = H, Me, Ph) produces the electrophilic enolyl radical which readily adds to electron-rich alkenes because of a favorable polar effect.16 We have reported that in the absence of trapping agents the photostimulated reaction of $PhCOCH_{2}$ -HgCl with norbornene produces a cyclized α -tetralone.^{11b} **This** reaction proceeds via an intermediate cyclohexadienyl radical formed by annelation of the adduct radical and the aromatic ring of the benzoyl group. The reaction **also** occurs readily for alkenes such as 1-hexene, reaction 1.

We thought that if a suitable trapping agent could be found which would selectively trap the nucleophilic adduct radical but not the electrophilic benzoylmethyl radical, the three-component condensation reaction **2** should occur.

0 1993 American Chemical Society

⁽¹⁾ (a) Giese, B. *Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds;* Pergamon: Oxford, **1986.** (b) Curran, **D.** P. *Synthesis* **1988,417,489.** (c) Ramaiah, M. *Tetrahedron* **1987,43, 3541.**

⁽²⁾ (a) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. *Science* **1946,102, 128. (b)** Kharasch, M. S.; Urry, W. H.; Kudema, B. M. *J. Org. Chem.* **1949,14,248.** *(c)* Curran, **D.** P.; Chen, M. H.; Kim, D. J. *Am. Chem. SOC.* **1989, 111,6265.**

⁽¹⁴⁾ Takai, K.; Nitta, K.; Fujimura, *0.;* Utimoto, K. J. *Org.* Chem. **1986,51,5498.**

⁽¹⁵⁾ (a) Heiba, **E.** I.; Dessau, R. M.; Rodewald, P. G. J. *Am. Chem.* SOC. **1974,96,** 797. (b) Snider, B. B.; Nohan, R.; Kates, S. A. J. Org. *Chem.* 1914, 50, 1971. (b) Snider, B. B.; Nonan, R.; Kates, S. A. J. *Org. Chem.*
1985, 50, 3659. (c) Snider, B. B.; Patricia, J. J.; Kates, S. A. J. *Org. Chem.*
1988, 53, 2137. **(16)** Walliig, C.; Briggs, E. R.; Wolfstim, K. B.; Mayo, F. R. J. *Am.*

Chem. Soe. **1948, 70,1537.**

PhCOCH₂HgCl + c -C_eH₁₀ + RSSR $\frac{hv}{m}$

Three-Component Radical Condensations
\nScheme I
\n
$$
R^{1}COCH_{2}HgCl \longrightarrow R^{1}COCH_{2} + HgCl^{2}
$$
\n
$$
R^{1}COCH_{2} + R^{2}CH_{2}CHAR^{3} \longrightarrow R^{1}COCH_{2}CH(R^{2})CH(R^{3})
$$
\n
$$
3 + RSSR \longrightarrow R^{1}COCH_{2}CH(R^{2})CH(R^{3})SR + RS^{2}
$$
\n
$$
4
$$
\nRS' + HgCl' \longrightarrow PhSHgCl
\nTable I. Photostimulated Reaction of PhCOCH₂HgCl with

Table I. Photostimulated Reaction of PhCOCH₂HgCl with **c-C6Hlo with RSSR.**

RSSR		Li ₂ CO ₃		% yield ^b		
(equiv)	solvent	(mmol)	conditions	PhCOCH ₃	5	6 ^c
Ph(2)	Me ₂ SO	0	dark, 24 h	95 ^d	0	0
Ph(2)	Me2SO	0	hv , 6 h	53	tr	27
Ph(2)	Me2SO	1	<i>hv</i> , 6 h	34	2	46
Ph(4)	Me2SO	1	$h\nu$, 6 ${\rm h}$	25	4	63
Ph(4)	DMF	1	<i>hv</i> .6h	34	3	43
Bu(2)	Me2SO	1	$h\nu$, 6 h	30		34 ^e
Ph(2)	Me2SO	1	$h\nu$, 6 $h\nu$	54	11	7
$Ph(1)^g$	Me2SO	1	$h\nu$, 6 h		$\mathbf 2$	46
Ph(5) ^s	Me ₂ SO	1	$h\nu$, 6 h		11	43
Ph(10) ^g	Me ₂ SO	1	<i>hv</i> .6h		15	30
Ph(20) ^s	Me2SO		hv , 6 h		17	17

⁴ Reaction of 0.25 mmol of the mercurial with $1-2.5$ mmol of c -C₆H₁₀ in 5 mL of solvent irradiated in a 350-mm Rayonet photoreactor at 40 °C. ^b GC yield with an internal standard after workup with aqueous Na₂S₂O₃. \cdot A mixture of cis and trans diastereomers, \sim 1:1. \cdot Ph-COCH3 resulta from the workup of PhCOCHzHgCl with aqueous Na₂S₂O₃. All PhCOCH₂HgCl was destroyed upon 6 h of photolysis. **e** Also formed, 5% of 1b and 11% of 2b. ^{*j*} Reaction employed</sup> (PhCOCH2)2Hg. *8* 0.5 mmol of PhCOCHzHgCl and 2.5 mmol of c -Ce H_{10}

The present report describes the successful utilization of PhSSPh **as** such a trapping agent.

 $PhCOCH₂HgCl + R²CH = CHR³ + X-Z$ $PhCOCH₂CH(R²)CH(R³)X + Z HgCl (2)$

Results and Discussion

Cyclohexene. The chain transfer constant of polystyrenyl radical (a nucleophilic radical) with PhSSPh is about 17 times greater than that for poly(methy1 methacrylate) radical (an electrophilic radical).¹⁷ [The relative values of k_p for styrene and methyl methacrylate are in the ratio of 1:51. We thus decided to investigate disulfides **as** trapping agents for the adduct radicals formed by the addition of PhCOCHz' to alkenes, Scheme I. Since the phenylthiyl radical has been shown to displace an alkyl radical (e.g., $tert$ -butyl) from an alkylmercurial,¹⁸ the possibility exists that Scheme I could involve a chain mechanism. Scheme I involves four paramagnetic species. For the reaction to succeed, R^1 COCH₂^{\cdot} should react faster with the alkene than with RSSR while radical 3 should react faster with RSSR. To test the feasibility of this process, the photostimulated reaction of PhCOCH₂HgCl, RSSR, and cyclohexene was investigated, reaction 3 and Table I.

The last four entries of Table I allow the relative reactivities of cyclohexene and PhSSPh toward PhCOCH₂^{*} to be calculated **as** 4.6, **3.9,** 4.0, and **4.0,** respectively.

One notable feature of the data of Table I is the complete absence of products formed by the addition of PhS' to

cyclohexene ($PhSC₆H₁₁$ or $PhSC₆H₁₀SPh$). It is known that the addition of thiyl radicals to alkenes is reversible and k_{-1}/k_{2} [RSSR] has been determined to be relatively large, reaction 4.19 The addition of PhS' to alkenes is

RS' + R²CH=CHR³
$$
\underset{k=1}{\rightleftarrows}
$$
 RSCH(R²)CHR^{3*} \longrightarrow
RSCH(R²)CH(R³)SR + RS' (4)

more reversible than the corresponding reactions involving
alkylthiyl radicals such as t -BuS^{*} because of the \sim 10 kcal/ mol resonance stabilization of PhS*.20 Another notable feature of the results is the complete absence of the cyclization product lb when PhSSPh was used **as** the trapping agent. The rate constant for the homolytic bimolecular displacement of PhS' from PhSSPh is known to be in the order of $10^6 M^{-1} s^{-1}$.^{21,22} This restricts the rate constant for the cyclization of 3 (\mathbb{R}^1 = Ph) derived from cyclohexene to $\leq 10^3$ s⁻¹. With the less reactive BuSSBu,²² some cyclization was detected (Table I).

One unexpected feature of the data of Table I is the dramatic effect of $Li₂CO₃$ which increases the yield of 6 and decreases the yield of PhCOCH3. Another surprising result was the observation that $(PhCOCH₂)₂Hg$ was much less effective than PhCOCHzHgCl in forming 6 and in the presence of $Li₂CO₃$ the ratios of PhCOCH₃/6 were much higher upon the photolysis of $(PhCOCH₂)₂Hg$ than of $PhCOCH₂HgCl.$ Only traces of $PhCOCH₂CH₂COPh$ were observed from either mercurial under the conditions of Table I. In the absence of the alkene/PhSSPh, PhCOCH₂CH₂COPh was a major product from either of the mercurials. These observations will be explained in a later section concerning the effect of carbonate bases upon the reaction.

Reactions of 1-Alkenes. The degree of substitution at a double bond plays an important role in determining the rate of addition of an alkyl radical to an alkene. For example, the methyl radical adds 6.5 times more readily to 1-butene than to cis-2-butene at 65 $^{\circ}$ C.²³ Therefore, it was expected that the $R^{1}COCH_{2}$ ^{*} radical would show an even greater selectivity in reactions with 1-alkenes than with cyclohexene. In Table I1 are summarized the results of photochemical reactions of a 4-fold excess of 1-alkenes with R^1 COCH₂HgCl, PhSSPh, and Li_2CO_3 (in a 1:2:5 mol ratio) in MezSO. **As** expected the 1-alkenes gave better yields of the trapping products $4 (R^2 = H)$ than did cyclohexene. The substituted alkenes, $CH₂=CH-$

⁽¹⁷⁾ Poutama, M. **In** Free Radicals; Kochi, J. K., Ed.; Wiley- Interscience: New **York, 1973;** Vol. **2,** p **149.**

⁽¹⁸⁾ Russell, G. A. Acc. Chem. Res. **1989, 22,** 1.

⁽¹⁹⁾ Kice, **J. L.** inFreeRadicals; Kochi, **J.** K., Ed., Wiley-Interscience: New **York, 1973;** Vol. **2,** p **724.**

⁽²⁰⁾ McPhee, **D. J.;** Compredon, M.; Lasage, M.; Griller, D. J. Am. Chem. Soc. **1989,111,7563.**

⁽²¹⁾ Pryor, W. A. in Organic Chemistry of Sulfur; Oae, S. A., Ed.; McGraw-Hill: New York, 1962; p 16.

(22) Toward *t*-Bu^{*} the relative reactivities of PhSSPh, BuSSBu,

⁽²²⁾ Toward t -Bu^{*} the relative reactivities of PhSSPh, BuSSBu, i -PrSSPr-t, and t -BuSSBu-t are 54:1.0:0.04:0.005 at 40 °C with a rate constant for displacement of BuS^{*} from BuSSBu of 5×10^{4} M⁻¹ s⁻¹; Russ G. A. in Advances in Free Radical Chemistry; Tanner, D. D., Ed.; **Jai** Press: London, **1990;** Vol. **1,** p **1.**

⁽²³⁾ Marcoux, L. **S.;** Adams, R. N.; Feldberg, S. W. J. Phys. Chem. **1969, 73, 2611.**

Table II. Photochemical Reactions of R¹COCH₂HgCl with $CH_2=CHR^3$ and PhSSPh To Yield 4 $(R^2 = H)^4$.

\mathbf{R}^1	R^3 in $CH_2=CHR^3$ (mmol)	% 4 (R = Ph, $R^2 = H$) ^b
Ph	Bu (0.30)	67
Ph	Bu (1.25)	80
CH ₃	Bu (1.25)	92
н	Bu (1.25)	90
Ph	Bu (1.25)	22c
Ph	$n\text{-}C_8H_{17}(0.30)$	68
Ph	CH ₂ OH (1.25)	26
Ph	CH ₂ OAc (1.25)	34
Ph	$CH2OSiMe3$ (1.25)	84
Ph	SiMe ₃ (0.30)	66
Ph	SiMe ₃ (1.25)	90
CH ₃	$\text{SiMe}_3(1.25)$	90
н	SiMe ₃ (1.25)	86

^aReaction of 0.25 mmol of R1COCH2HgCl,0.50mmol of PhSSPh, and 1.25 mmol of Li_2CO_3 in 2.5 mL of Me₂SO in a 350-mm Rayonet photochemical reactor at 40 °C for 6 h. ^b GC yield with an internal standard after aqueous Na₂S₂O₃ workup. With BuSSBu. Also formed 31% of la.

Scheme **I1**

 $CH₂OSiMe₃$ or $CH₂=CHSiMe₃$, gave excellent yields of the three-component condensation products. However, the more easily polymerized $CH_2=CHPh$ failed to give significant amounts of $4 (R^2 = H, R^3 = Ph)$ with PhSSPh. With BuSSBu the cyclized α -tetralone **(1a)** was the major product with 1-hexene while t-BuSSBu-t failed to give any of the trapped product $4 (R = t-Bu, R^2 = H, R^3 = Bu)$.

Reactions of Enol **Ethers.** The electrophilic carbonylsubstituted methyl radical is expected to react faster with more electron-rich alkenes such **as** enol ethers because of stabilization of the transition state structure **7,** Scheme II. The trapped product 4a is an O,S-acetal which can be readily hydrolyzed to the 1,4-dione 8. The O , S-acetals were often unstable to GC analysis, e.g., $R^1 = R^3 = R^4$ Ph, and eliminated PhSH to form **9.** The acetals **4a** with $R⁴$ = Ph were much more resistant to hydrolysis than the acetals with R^4 = Et or Bu while the O,S-acetals from 1-ethoxy- or **1-(trimethylsi1oxy)cyclohexene** underwent hydrolysis upon workup with aqueous $Na₂S₂O₃$ in the absence of any added acid to form 10. On the other hand, the $O.S$ -thioacetals from dihydropyran were stable to the workup conditions and compounds **11** could be isolated, predominantly or exclusively as the cis isomers. Table **I11** summarizes the results.

The 'H NMR spectra of **llc** and **lld** showed a single cis-substituted diastereomer with an axial-equatorial coupling of the methine hydrogens of $3.9-4.2$ Hz.²⁴ With **1 la** or **1 lb** the cis isomers predominated over the trans by a factor of *5.5-6.* Giese has demonstrated that the reaction of tetraacetylglucosyl bromide with Bu3SnH in the presence of $CH_2=CHCN$ affords the coupling product with

Table **111.** Photochemical Reactions **of** R'COCHzHgCl with Enol Ethers in the Presence of PhSSPh and Li₂CO_{3⁴}

enol ether	product $(\%)^b$
$CH2=CHOH$	PhCOCH ₂ CH ₂ CHO (55) ^c
$CH2$ -CHOBu	PhCOCH ₂ CH ₂ CHO (56) ^c
$CH2=CHOPh$	PhCOCH ₂ CH ₂ (SPh)OPh (37) ^d
1-ethoxycyclohexene	10c (58)
	$10b$ (35)
	10a(37)
1-(trimethylsiloxy)- cyclohexenee	10c(40)
1-(trimethylsiloxy)- cyclohexene	10c(51)
1-(trimethylsiloxy)- cyclohexene	$10b$ (40)
	cis-11c $(43)^d$
	$cis-11d(43)'$
	11b(32) ^s
	11a $(42)^h$
$CH2=CHOBu$	PhSO ₂ CH ₂ CH(OBu)SPh (40) ⁱ
	1-ethoxycyclohexene 1-ethoxycyclohexene dihydropyran dihydropyran dihydropyran dihydropyran

a,b See Table II. ^c After hydrolysis with 2 M hydrochloric acid. dEliminatad PhSH under GC conditions. Yield meaaured for elimination product. e 0.30 mmol. *f* BuSSBu instead of PhSSPh. e cis/ $trans = 6.$ h cis/trans = 5.5. ^{*i*} PhSSO₂Ph instead of PhSSPh. Yield baaed on PhSSOzPh.

an axial substituent at C-1 with a stereoselectivity decreasing from $a/e = 50$ to 3.5 when the ring substituents are changed from OAc to OMe.26 The stereoselectivity was ascribed to a preferred structure for the intermediate a-radical **(12).** A similar explanation explains the high preference for the formation of the axial trapping product (i.e., syn addition) from the adduct radical **13** with the equatorial preference of the substituent $CH₂COR$ decreasing from $R = Ph$ to $R = H$ or Me.

Toward alkyl radicals $PhSSO₂Ph$ has a reactivity approximately the same **as** PhSSPh. However, when PhSSOzPh was substituted for PhSSPh under the conditions of Table **111,** the only significant product formed from CH_2 =CHOBu was PhSO₂CH₂CH(OBu)SPh. This product reflecta the higher reactivity and lower reversibility relative to PhS^{\cdot} for the attack of PhS O_2 ^{\cdot} upon the alkene. With PhSeSePh the addition product analogous to **4a** was not observed, presumably because the very reactive PhSeSePh trapped PhCOCH2' before addition to the vinyl ether could occur.18

Reaction of Vinyl Sulfides. The reactions of PhCOCH₂HgCl with vinyl sulfides in the presence of

⁽²⁴⁾ Giese, B.; Dupuis, J. *Angew. Chem., Int. Ed. Engl.* 1984,23,896.

⁽²⁵⁾ Dupuis, J.; Giese, B.; **Ruegge,** D. *Angew. Chem., Int. Ed. Engl.* 1984,23,896.

Table IV. Photochemical Reactions of PhCOCH₂HgCl with **14 in the Presence of PhSSPh or BuSSBu.**

vinyl sulfide	R in RSSR	products $(\%)^b$
14a	Ph	15a (30) , $(17a)(3)$, d 6a (4) ^e
14a	Bu	17a (23), ^d 6a (26) ^e
14b	Ph	15b $(51)^{c,e}$
14b	Bu	17b (23) , 6b (34) ^e

^a See Table II. ^b GC yield unless otherwise noted. ^c Isolated yield. ^d GC yield of the dione 10c after hydrolysis with HgCl₂ in MeCN **(75%)-H20 (25%). e Mixtureofcisandtransisomers.** *f* **Intheabsence** of RSSR or Li₂CO₃.

disulfides were expected to yield thioacetals or upon hydrolysis the 1,4-diones. However, phenyl vinyl sulfide gave only traces of $PhCOCH_2CH_2CH(SPh)_2$ and polymerization appeared to be the major reaction pathway. Reactions of the less easily polymerized 1-cyclohexenyl sulfides 14 with PhCOCH₂HgCl and PhSSPh yielded the expected thioacetals **15a,b** which readily lost PhSH under

sulfides **6** and unsaturated sulfides **17** were **also** initial reaction products formed in low yields with PhSSPh **as** the trapping agent but as the predominant products with BuSSBu or in the absence of any disulfide. The adduct radicals **18** must disproportionate to **6** and **17.** In the absence of a disulfide none of the isomeric **16** was observed, indicating high regiochemical control for the disproportionation, reaction 5. Again, a much higher reactivity was

2 ffHzcoph - **6a,b** + **17r,b (5) 18, a, R** = Ph **b.R=BU**

observed for PhSSPh than for BuSSBu in the trapping of the adduct radical **18** and **15c** could not be detected.22 Although **15b** was formed from the reaction of PhSSPh with **18b,** reaction of **18a** with BuSSBu did not occur and only disproportionation products **6b** and **17b** were observed. Table IV summarizes pertinent results.

Evidence against a *Free* **Radical Chain Mechanism.** Attempts to initiate a chain reaction by use of AlBN at 80 °C were unsuccessful. Although PhS' readily displaces t-Bu' from t-BuHgC1 leading to a variety of free radical 80 °C were unsuccessful. Although PhS' readily displaces
t-Bu' from t-BuHgCl leading to a variety of free radical
chain reactions such as t -BuHgCl + PhSSPh $\rightarrow t$ -BuSPh
the BuSH₂Cl and Displace CHSPh in the Pull-Cl chain reactions such as t -BuHgCl + PhSSPh $\rightarrow t$ -BuSPh
+ PhSHgCl or PhCH=CHSPh + t -BuHgCl \rightarrow t -BuCH=CHPh + PhSHgCl,¹⁸ the displacement of Ph-COCH₂' from PhCOCH₂HgCl by PhS' probably does not occur readily. Furthermore, the photolysis of

PhCOCHzHgCl under the conditions employed in Tables I-IV occurs rapidly giving a high radical **flux** that would not be conducive to a chain reaction.

Measurement of kinetic chain length using the t -Bu₂NO \cdot (DBNO) inhibition method is not easily applied to photochemically initiated processes in the presence of PhSSPh. We thus applied this technique to an allylic substitution process involving the formation of PhS' by a β -elimination, reaction 6.^{12f,26} The initial rate of forphotochemically imitated processes in i
PhSSPh. We thus applied this techniq
substitution process involving the forma
a β -elimination, reaction $6.12f,26$ The ini
PhCOCH₂HgCl + CH₂=CHCH₂SPh $\frac{hv}{pnCOCH-CH-CH-CH}$

$$
nCOCH2HgCl + CH2 = CHCH2SH2CH2CH2CH2CH2 + PhSSPh (6)19 (70%)+ PhCOCH39%
$$

mation of 19 with 0.1 M PhCOCH₂HgCl under the standard photochemical conditions of Tables I-IV was 6.4×10^{-4} M min⁻¹ (by ¹H NMR). Under similar conditions in the presence of 1.25×10^{-2} M DBNO, compound 19 could not be detected until after 20 min of photolysis. This leads to a photochemical rate of formation of radicals trapped by DBNO of 6×10^{-4} M min⁻¹. A possible scenario is that only PhCOCH2' is trapped by DBNO and that only **1** mol of **19** is produced per mol of PhCOCH2' generated photochemically. It must be concluded that under the conditions employed the reaction $PhS^* + PhCOCH₂HgCl$ \rightarrow PhCOCH₂⁺ + PhSHgCl plays little or no role and that both reaction 6 and the general process of Scheme I are photochemical reactions with quantum yields **<l.** The formation of PhCOCH2' in Scheme I is thus formulated **as** involving direct photolysis of the mercurial and not via photodissociation of PhSSPh followed by displacement of PhCOCH₂HgCl from the mercurial. Thus, the rate of disappearance of PhCOCHzHgCl upon photolysis was about the same in the presence or absence of PhSSPh or a mixture of PhSSPh and $CH_2=CHSiMe_3$. Photochemical electron transfer between PhCOCH²HgCl and PhSSPh does not appear to be important.

Role of Alkali Carbonates. Table V presents additional evidence demonstrating the importance of alkali carbonates in the formation of γ -(phenylthio) carbonyl compounds from alkenes.

Organomercurials of the type RCOCHzHgCl are **known** to readily react with proton donors to form RCOCH_3 ²⁷ For example, mixing 1 equiv of HC1, ammonium **salta,** or PhSH with $PhCOCH₂HgCl$ in $Me₂SO-d₆$ forms $PhCOCH₃$ rapidly and quantitatively (by 1 H NMR). Thus, it appears that alkali carbonates prevent the cleavage of the mercurial by neutralization of acidic byproducts formed in the photochemical reaction. In the dark the reaction of $PhCOCH₂HgCl, PhSSPh, and c-C₆H₁₀ in Me₂SO-d₆ failed$ to form significant amounts of $PhCOCH₃$ by ¹H NMR. The photochemical formation of PhS' and ita reaction with allylic hydrogen atoms to form PhSH²⁸ seems a likely route to a reagent capable of destroying $PhCOCH₂HgCl$ in **an** electrophilic manner. When **2** equiv of PhSSPh and 5 equiv of c-C₆H₁₀ were photolyzed for 6 h in Me₂SO- d_6 under the standard conditions, a broad 'H NMR peak at δ 5.35 was observed for PhSH. When 1 equiv of

⁽²⁶⁾ Russell, G. A.; Ngoviwatchai, P.; Wu, Y.-W. J. *Am.* **Chem. SOC. 1989,** *111,* **4921.**

⁽²⁷⁾ Jensen, F. R.; Rickborn, B. Electrophilic Substitution *of* **Orga- (28) Analytical Edgew-Hill: New York, 1968. nomecurials; McGraw-Hill: New York, 1968.** *nomecurials***; 77, 4435.**

Table **V.** Effects **of** Bases **on** the Photochemical Reaotions **of** PhCOCHaHgCl with Alkenes in the Presence **of** PhSSPh.

alkene	base (mmol)	PhCOCH ₃ $(\%)^b$	other $(\%)^b$
dihydropyran	none	78	$cis-10c(4)$
dihydropyran	$DTB(0.50)^c$	70	$cis-10c(3)$
dihydropyran	Na ₂ CO ₃ (1.25)		$cis-10c(33)$
dihydropyran	Li ₂ CO ₃ (1.25)		$cis-10c(43)$
1-hexene	none	36	PhCOCH ₂ CH ₂ CH(SPh)Bu (47)
1-hexene	DABCO $(0.50)^d$	76	PhCOCH ₂ CH ₂ CH(SPh)Bu(7)
1-hexene	$Na2CO3$ (1.25)	tr	$PhCOCH2CH2CH(SPh)Bu (72)$
1-hexene	$Li_2CO_3(1.25)$	tr	$PhCOCH2CH2CH(SPh)Bu (80)$

^a Reaction of 0.25 mmol of PhCOCH₂HgCl, 0.50 mmol of PhSSPh, and 1.25 mmol of alkene in 2.5 mL of Me₂SO in a 350-nm Rayonet photoreactor at 40 °C for 6 h. Workup with aqueous Na₂S₂O₃. ^b GC yield with an internal standard. ²2,6-Di-tert-butylpyridine. a 1,4-Diaza[2.2.2] bicyclooctane.

PhCOCH₂HgCl was added after photolysis, the peak at δ **5.35** disappeared and nearly all of the mercurial was converted to PhCOCH3. When the PhSH was first reacted with an excess of $Li₂CO₃$ before the addition of PhCOCH₂HgCl, essentially no PhCOCH₃ was formed although some symmetrization of the organomercurial to form (PhCOCH₂)₂Hg was observed. However, the effect of $Li₂CO₃$ on the reactions of PhCOCH₂HgCl with PhSSPh and alkenes is a bit more subtle than simply converting PhSH to PhSLi. Thus, the photochemical reaction between PhCOCHzHgCl, 1-hexene **(5** equiv), PhSSPh **(2** equiv), and PhSLi (1 equiv) in MezSO failed to form any of the expected $PhCOCH_2CH_2CH(SPh)Bu$ and instead yielded only PhCOCH3 **(57%**). Since the photolysis had been conducted for 6 h, all of the PhCOCH₂HgCl should have been destroyed before the aqueous $Na₂S₂O₃$ workup. Neither the dimer PhCOCH₂CH₂COPh nor PhCOCH₂SPh was observed although the dimer is formed in high yield when $PhCOCH₂HgCl$ or $(PhCOCH₂)₂Hg$ are photolyzed in the absence of a substrate to trap $PhCOCH₂[*]$.^{11b} Apparently PhSLi is itself an excellent trapping agent for PhCOCHz' reducing the enolyl radical to the anion. Photolysis of a 1:1 mixture of PhCOCH₂HgCl and PhSLi in Me₂SO- d_6 for 2 h again gave only PhCOCH₃ with no $PhCOCH₂CH₂COPh$ or $PhCOCH₂SPh$ and with some symmetrization of the mercurial. However, when 1 equiv of $HgCl₂$ was added at the start of the photolysis, PhCOCH₂CH₂COPh was the major product, PhCOCH₃ was not detected, and the mercurial was not symmetrized. It is known that HgCl₂ reacts readily with PhSH or PhSto form $Hg(SPh)₂$ ²⁹ It thus appears that the dramatic effect of alkali carbonates (Tables I and **V)** upon the reaction involves not only the conversion of PhSH to PhSLi but also the rapid conversion of PhSLi to $(\text{PhS})_2\text{Hg}$ via PhSHgCl. Apparently either $HgCl₂$ or PhSHgCl reacts more rapidly with PhSLi than PhCOCH₂HgCl itself. PhSHgCl can be formed in the photolysis reaction byeither the coupling of PhS[•] and HgCl[•] or by attack of HgCl[•] upon PhSSPh. The latter process was demonstrated by the photolysis of a 1:l mixture ClHgHgCl and PhSSPh in MezSO-de. In 4 h **63** % of the PhSSPh was consumed to form a mixture of PhSHgCl, $(PhS)_2Hg$, and HgCl₂.

From the foregoing analysis, it would be expected that substitution of $(PhCOCH₂)₂Hg$ for $PhCOCH₂HgCl$ would result in lower yields of $6a$ even in the presence of $Li₂CO₃$, confirming the experimental result (Table I). Although the $Li₂CO₃$ would still neutralize the PhSH, in the absence of a mercury(I1) chloride salt to react with PhSLi, the thiolate anion would reduce $PhCOCH_2$ ⁺ to $PhCOCH_2$ ⁻ and prevent the formation of significant amount of **6a.**

Conclusions

The reactions of carbonyl-substituted methyl radicals with electron-rich alkenes in the presence of PhSSPh and a base such **as** LizC03 represents a convenient method for the regioselective formation of new carbon-carbon bonds. The use of CHOCH₂HgCl to extend a carbon chain and the use of enol ethers or vinyl sulfides to form 1,4 dicarbonyl compounds are interesting features of these reactions.

The preparation of γ -(arylthio) carbonyl compounds under ionic conditions has been previously reported in the reactions of episulfonium ions with siloxyalkenes, e.g., reaction 7.30 However, in these processes the enol deriv-

ative mainly attacks the more substituted carbon atom of the episulfonium ion to yield products that are regioisomers to those produced in reaction **2** with **X-Z** = PhSSPh. Conversion of terminal alkenes to $ArSCH_2CH(R)Cl$ with ArSClfollowed by reaction with siloxyalkenes gives a low regioselectivity, except in the case of styrene, in contrast to the high regioselectivity demonstrated in the free radical processes summarized in Tables I1 and 111.

Experimental Section

General Methods. lH (300 MHz) and 13C **(75** MHz) NMR spectra were obtained with a Nicolet NT 300 spectrometer with TMS **as** the internal standard. Mass spectra were obtained in the GC mode with a Finnigan 4000 with INCOS data system and in the high resolution mode with a Kratos MS-50 spectrometer. Analytical **gas** chromatography was performed with a **Varian** 3700 chromatograph equipped with a Hewlett-Packard 3390A integrator using 7% **OV-3 as** the stationary phase. Analytical thin layer chromatography was performed **on** glass silica gel plates (Aldrich Chemical Co.) with UV detection. Melting points were determined with a Thomas-Hoover capillary melting point apparatus and are uncorrected. Most products were isolated by either flash column chromatography on silica gel (Kiesel gel, 230-400-mesh ASTM, purchased from EM Reagents Co.) or by preparative TLC. GC yields were determined using biphenyl **as** an internal standard and are corrected with predetermined response factors.

Materials. Dimethyl sulfoxide was distilled from CaH₂ and stored over **4-A** molecular sieves under nitrogen atmosphere. **DMF** was distilled from CaHz. (Benzoylmethy1)mercuy chloride

⁽²⁹⁾ Gregg, **D. C.; Iddles, H. A.; Stearms, P.** *W. J. Org. Chem.* **1951,** *16,* 246.

⁽³⁰⁾ Gozdz, A.; Maslak, P. *Tetrahedron Lett.* **1983,** *24,* **961, 1315.**

Three-Component Radical Condensations

(PhCOCHZHgCl) and **bis(benzoylmethy1)mercury** $[(PhCOCH₂)₂H_g]$ were prepared as described previously.^{11b} (Acetylmethy1)mercury chloride was prepared by reaction of isopropenyl acetate and mercuric acetate followed by treatment with KCl,³¹ mp 103-104 °C (lit.³¹ mp 103-104 °C): ¹H NMR (Me₂SO-d₆) δ 2.06 (s, 3 H), 2.56 (s, 2 H with ¹⁹⁹Hg satellites, $J =$ 324 Hz), (Formylmethyl)mercury chloride [HC(=O)CH₂HgCl] was prepared by reaction of vinyl acetate and mercuric acetate followed by treatment with aqueous KCl,³¹ mp 129-130 °C dec (lit.³¹ mp 129-130 °C): ¹H NMR (Me₂SO-d₆) δ 2.61 (d, $J = 5.1$) Hz, 2 H with ¹⁹⁹Hg satellites, $J = 325$ Hz), 9.32 (t, $J = 5.1$ Hz, 1 H). 1- **[(Trimethylsilyl)oxy]cyclohexene** was prepared from cyclohexanone.³² Phenyl vinyl ether was prepared by a two-step process from ethylene dibromide and phenol:³³¹H NMR (CDCl₃) δ 4.41 (d, $J = 6.0$ Hz, 1 H), 4.75 (d, $J = 13.8$ Hz, 1 H), 6.63 (dd, *^J*= 6.6, 13.8 **Hz,** 1 H), 6.99 (d, *J* ⁼7.8 Hz, 2 H), 7.06 (t, J ⁼7.5 Hz, 1 H), 7.30 $(t, J = 7.8 \text{ Hz}, 2 \text{ H})$. 1-Ethoxycyclohexene was prepared from cyclohexanone using ethyl orthoformate with a catalytic amount of PTSA:^{34 1}H NMR (CDCl₃) δ 1.28 (t, $J = 7.2$ Hz, 3 H), 1.47-1.57 (m, 2 H), 1.61-1.70 (m, 2 H), 2.00-2.08 (m, 4 H), 3.68 $(q, J = 7.2 \text{ Hz}, 2 \text{ H})$, 4.59 $(t, J = 3.0 \text{ Hz}, 1 \text{ H})$. **1-(Buty1thio)cyclohexene was** prepared from cyclohexanone and BUSH in presence of a catalytic amount of PTSA by dehydration: ³⁵ ¹H NMR (CDCl₃) δ 0.92 (t, $J = 7.2$ Hz, 3 H), 1.41 (apparent sextet, *J* = 7.5 Hz, 2 H), 1.52-1.73 (m, 2 H), 2.06-2.15 (m, 2 H), 2.65 (t, *J* = 7.5 Hz, 2 H), 5.61 (br **s,** 1 H). 1-(Pheny1thio)cyclohexene was prepared from cyclohexanone and thiophenol by dehydration with $P_2O_5;^{35}$ the ¹H NMR was identical with that in the literature.³⁶ Phenyl allyl sulfide was prepared from PhSH and allyl bromide with sodium ethoxide in ethanol.³⁷ PhSO₂SPh was prepared by oxidation of diphenyl disulfide with 30% H₂O₂ in acetic acid.³⁸ All other reagents were commercially available.

General Procedure for the Photostimulated Reaction of $R^{1}COCH_{2}HgCl$ ($R^{1} = Ph$, CH_{3} , H) with Alkenes in the Presence of Disulfide and Li₂CO₃. The mercurial, disulfide, $Li₂CO₃$, and a magnetic stir bar were placed in a dry Pyrex test tube and MezSO was added by syringe through a rubber septum. The mixture was then deoxygenated by bubbling dry nitrogen through it for about 20 min. After addition of previously deoxygenated alkene via a syringe through the septum, the reaction mixture was irradiated with stirring in a 350-mm Rayonet photoreactor at 40 "C for 6 h.

Isolation Procedure. The reaction mixtures were diluted with 50 mL of CH_2Cl_2 , a known amount of biphenyl was added, and the resulting mixture was washed three times with 15% aqueous $Na_2S_2O_3$, followed by water. The CH_2Cl_2 layer was then dried over anhydrous $Na₂SO₄$ and analyzed by GC or the solvent was removed and products were isolated by column chromatographyor preparativeTLC. Hexane (98%)/ethylacetate (2%) was used **as** eluant for flash column chromatography unless otherwise mentioned.

4-Butyl-1-tetralone (la). This compound was isolated **as** a liquid 'H NMR (CDCl3) **6** 0.92 (t, *J* = 6.9 Hz, 3 H), 1.30-1.50 (br s,4 H), 1.64-1.75 (m, 2 H), 1.99-2.13 (m, 1 H), 2.17-2.32 (m, 1 H), 2.51-2.63 (m, 1 H), 2.70-2.85 (m, 1 H), 2.86-2.97 **(m,** 1 H), 7.25-7.33 (m, 2 H), 7.48 (t, *J=* 7.2 Hz, 1 H), 8.02 (d, *J=* 7.2 **Hz,** 1 H); ¹³C NMR (CDCl₃) δ 198.33, 148.53, 133.27, 131.79, 128.19, **127.22,126.45,37.94,34.84,34.34,29.79,26.63,22.75,14.01;GCMS** *m/z* (relative intensity) 202 (M⁺, 29), 160 (8), 145 (100), 131 (13), 117 (36), 91 (13), 77 (7); HRMS m/z 202.1360 (calcd for C₁₄H₁₈O 202.1358).

1-Phenyl-1-octanone (2a).30 This compound was isolated **as** a liquid: ¹H NMR (CDCl₃) δ 0.88 (t, $J = 7.2$ Hz, 3 H), 1.10-1.50 $(m, 10 H)$, 1.65-1.80 $(m, 2 H)$, 2.96 $(t, J = 7.2 Hz, 2 H)$, 7.46 $(t,$ $J = 7.2$ Hz, 2 H), 7.55 (t, $J = 7.2$ Hz, 1 H), 7.96 (d, $J = 7.5$ Hz, 2 **H);** GCMS *m/z* (relative intensity) 205 (M+, 6), 133 (8), 120 (81), 105 (100), 77 (50).

4b.5.6.7.8.8a-Hexahydro-10-phenanthrenone (1b). This material isolated by column chromatography was an 83:17 mixture (by capillary and column GC) of trans and cis ring junctures. The ¹H NMR (CDCl₃) was very complex but the following signals were assigned to the major isomer: 6 1.43-2.00 (m, **8** H), 2.31- 2.72 (m, 2 H), 2.81-2.99 (m, 2 **H),** 7.29 (t, *J* = 7.2 Hz, 2 H), 7.49 (t, *J* = 7.2 Hz, 1 H), 8.02 (d, *J* = 7.2 Hz, 1 H); 13C NMR (CDCla) **6 199.06,148.58,133.62,131.49,128.35,127.01,126.39,40.48,39.76,** 33.66, 30.03, 29.95, 25.22, 20.79; GCMS (major isomer) *m/z* (relative intensity) 200 (M+, 83), 185 (8), 158 (loo), 144 (26), 131 (33), 115 (42), 105 (12), 77 (18); HMRS m/z calcd for C₁₄H₁₆O 200.1201 (found 200.1202); GCMS (minor isomer) *m/z* (relative intensity) 200 (M⁺, 100), 185 (44), 158 (81), 131 (59), 115 (45), 105 (39), 91 (20), 77 (29).

(Benzoylmethy1)cyclohexone (2b).@ This compound **was** isolated as a liquid: ¹H NMR (CDCl₃) δ 0.95-1.08 (m, 2 H), 1.12-
1.33 (m, 2 H), 1.60-1.79 (m, 4 H), 1.90-2.05 (m, 1 H), 2.82 (d, J 1.33 (m, 2 H), 1.60-1.79 (m, 4 **H),** 1.90-2.05 (m, 1 H), 2.82 **(d,** *J* = 6.6 Hz, 2 H), 7.45 (t, J = 7.2 Hz, 2 H), 7.55 (t, *J* = 7.2 Hz, 1 H), 7.95 (d, *J* = 7.2 Hz, 2 H); GCMS *m/z* (relative intensity) 202

(M⁺, 8) 120 (100), 105 (66), 77 (41).
 α -(**Phenylthio**)acetophenone (5a).⁴¹ This compound was isolated as a solid: mp 53-54 °C; ¹H NMR (CDCl₃) δ 4.15 (s, 2) H), 7.20-7.70 (m, 5 H), 7.80-8.10 (m, 5 H); GCMS *m/z* (relative intensity) 230 (M+, 37), 123 (9), 105 (loo), 91 (5),77 *(58).* The ¹H NMR was identical to that given in the literature.⁴¹

1-(Benzoylmethyl)-2-(phenylthio)cyclohexane (6a). This compound was isolated by column chromatography **as** a mixture of cis and trans isomers in approximately a 1:l ratio (by 'H NMR): ¹H NMR (CDCl₃, mixture of two isomers) δ 1.05-1.31 (m, 2 H), 1.34-1.38 (m, 6 H), 1.62-1.98 (m, 7 H), 2.05-2.20 (m, 2 H), 2.50-2.63 (m, 1 H), 2.74-2.99 (m, 3 H), 3.36 (dd, $J = 6.3$, 17.1 Hz, 1 H), 3.64 (br **s,** 1 H), 3.80 (dd, *J* = 3.0, 16.0 Hz, 1 H), 7.04-7.58 (m, 16 H), 7.89 (d, J ⁼7.2 Hz, 2 H), 7.96 (d, *J* = 7.2 Hz, 2 H); ¹³C NMR (CDCl₃, mixture of two isomers) δ 199.75, 199.63, 137.24, 136.08, 134.82, 132.81, 132.30, 131.22, 128.80, **128.48,128.40,128.10,128.00,126.86,126.33,52.80,51.74,43.95, 41.78,38.91,36.74,34.63,** 33.18,31.29, 28.70,26.58, 25.39,24.71, 21.97; **GCMS** *m/z* (relative intensity) 310 (M+, 3), 201 (1.5), 190 (68), 105 (100), 77 (45); HRMS m/z 310.1390 (calcd for $C_{20}H_{22}OS$ 310.1391). Anal. Calcd for C₂₀H₂₂OS: C, 77.37; H, 7.14; S, 10.33. Found: C, 77.65; H, 7.27; S, 10.19.

l-(Benzoylmethyl)-2-(butylthio)cyclohexane (6b). This compound was identified only by GCMS: major isomer, *m/z* (relative intensity) 290 (M+, 2), 201 (l), 170 (loo), 114 (38), 105 (65), 78 (30).

1-Phenyl-4-(phenylthio)-1-octanone $(4, R = R^1 = Ph, R^2)$ = **E,** R* = Bu). This compound **was** isolated **as** a viscous liquid ¹H NMR (CDCl₃) δ 0.89 (t, $J = 7.2$ Hz, 3 H), 1.31 (sextet, $J =$ 7.2 Hz, 2 H), 1.41-1.69 (m, 4 H), 1.82-1.97 (m, 1 H), 2.07-2.21 (m, 1 H), 3.10-3.31 (m, 3 H), 7.19 (t, *J* = 7.2 Hz, 1 H), 7.26 (t, *^J*= 7.2 Hz, 2 H), 7.38 (d, *J* = 7.2 Hz, 2 H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1 H), 7.93 (d, J = 7.2 Hz, 2 H); ¹³C NMR (CDCb) **6** 199.88, 136.89, 135.14, 132.97, 131.90, 128.84, 128.53, **128.02,126.72,48.43,35.69,34.75,29.13,28.78,22.58,14.14;GCMS** *m/z* (relative intensity) 312 (M⁺, 8), 203 (24), 192 (18), 150 (61), 105 (100), 77 (41); HRMS m/z 312.1544 (calcd for C₂₀H₂₄OS 312.1548). Anal. Calcd for C₂₀H₂₄OS: C, 76.87; H, 7.74; S, 10.26. Found: C, 76.066; H, *7.89;* S, 9.97.

l-Phenyl-4-(phenylthio)-1-dodecanone $(4, R = R^1 = Ph,$ $R^2 = H, R^3 = n - C_8H_{17}$. This compound was isolated as a liquid: ¹H NMR (CDCl₃) δ 0.88 (t, $J = 6.6$ Hz, 3 H), 1.26 (br s, 10 H), 1.44-1.66 (m, 2 H), 1.57-1.68 (m, 2 H), 1.82-1.98 (m, 1 H), 2.08- 2.22 (m, 1 H), 3.10-3.30 (m, 3 **H),** 7.19 (t, *J* = 7.2 Hz, 1 **H),** 7.26 (t, *J=* 7.2 Hz, 2 H), 7.39 (d, *J=* 7.2 Hz, 2 H), 7.44 (t, *J=* 7.2 Hz, 2 H), 7.55 (t, *J* = 7.2 Hz, 1 **H),** 7.94 (d, *J=* 7.2 Hz, 2 H); lac NMR (CDCb) **6** 199.81, 136.86, 135.14, 132.93, 131.87, 128.81, 128.49, **127.99,12.68,48.82,35.66,35.03,31.85,29.47,29.25,28.76,26.92,**

⁽³¹⁾ Nesmeyanov, A. N.;Lutaenko, I. F.;Tumanova, **Z.** M.Zzuest. *Akad. Nauk S.S.S.R., Otdel Khim. Nauk* **1949, 601;** *Chem. Abstr.* **1950,** *44,* **7225c.**

⁽³²⁾ House, H. O.;Czuba, L. J.; Gall,M.; Olmsted, H. 0. *J.* Org. *Chem.* **1969,34,2324.**

⁽³³⁾ Wohl, A.; Berthold, E. *Chem. Ber.* **1910,43, 2175.**

⁽³⁴⁾ Johannissian, A.; Akunian, E. *Bull. uniu.* **etat** *R.S.S.-Armenie* **1930, 245;** *Chem. Abstr.* **1931,25,921.**

⁽³⁵⁾ Kakimoto, M.; **Yamamoto,** T.; Okawara, M. *Tetrahedron* Lett. **1979, 623.**

s, 623.
(36) Trost, B. M.; Lavoie, A. C. J. *Am. Chem. Soc.* 1983, 105, 5075.
(37) Tarbell, D. S.; McCall, M. A. J. *Am. Chem. Soc.* 1952, 74, 48.
(38) Trost, B. M.; Massiot, G. S. J. *Am. Chem. Soc.* 1977, 99, 4405.

⁽³⁹⁾ Beynon, J. H.; Capriol, R. M. *Org. Mass Spectrosc.* **1971**, 5, 967.

⁽⁴⁰⁾ Brown, **H.** C.; Rogic, M. M.; Nambu, H.; Rathke, M. W. *J. Am. Chem. SOC.* **1969,** *91,* **2147.**

⁽⁴¹⁾ Grieabaum, K.; **Oswald,** A. A.; Hudson, B. E. J. *Am. Chem. SOC.* **1963,85, 1969.**

22.65,14.12; GCMS *m/z* (relative intensity) **368 (M+, 61,281 (5), 259 (29), 248 (ll), 207 (22), 150 (55), 138 (25), 105 (loo), 77 (30); HRMS** m/z 368.2170 (calcd for $C_{24}H_{32}OS$ 368.2174).

 $5-(Phenylthio)-2$ -nonanone $(4, R = Bu, R^1 = Me, R^2 = H,$ $R^3 = Bu$). This compound was isolated as a liquid: ¹H NMR **(CDCL) 6** 0.88 (t, *J* = **7.2 Hz, 3 HI, 1.29** (sextet, *J* = **7.2 Hz, 2 H), 1.38-1.62** (m, **4 H), 1.78-1.83** (m, **1 H), 1.87-2.03** (m, **1 H), 2.10 (e, 3 H), 2.61-2.71** (m, **2 H), 3.02-3.20** (m, **1 H), 7.21** (t, J ⁼**7.2 Hz,1H),7.27(t,J=7.2Hz,2H),7.36(d,J=7.2Hz,2H);13C NMR~CDC~)6208.37;135.11,131.88,128.81,126.72,48.55,40.57, 34.62, 30.00, 29.02, 28.18, 22.52, 13.98; GCMS** *mlz* (relative intensity) **250 (M+, 7), 192 (4), 150 (17), 141 (23), 123 (19), 110 (24), 97 (3), 83 (17), 43 (100); HRMS** *mlz* **250.1386** (calcd for **ClaHZzOS 250.1391).** Anal. Calcd for **C16HzzOS: C, 71.95; H,** 8.86; S, 12.81. Found: C, 71.90; H, 8.35; S, 13.21.

 $4-(Phenylthio)octanal$ $(4, R = Ph, R^1 = R^2 = H, R^3 = Bu)$. This compound was isolated **as** a liquid: **'H NMR (CDCL) 6 0.89** (t, *J* = **7.2 Hz, 3 H), 1.30** (sextet, *J* = **7.2 Hz, 2 H), 1.38-1.65** (m, **4 H), 1.71-1.86** (m, **1 H), 1.90-2.04** (m, **1 H), 2.67** (t, *J* = **7.2 Hz,** 2H), 3.09 (apparent pentet, $J=6.6$ Hz, 1 H), 7.22 (t, $J=6.9$ Hz), **7.28** (t, *J* = **7.2 Hz, 2 H), 7.37** (d, *J* = **7.5 Hz, 2 H), 9.75** *(8,* **1 H); 41.04, 34.42, 29.03, 26.59, 22.52, 13.98; GCMS** *mlz* (relative intensity) **236** (M⁺, 11), 192 (3), 179 (3), 150 (9), 127 (20), 110 **(loo), 109 (61), 67 (34); HRMS** *mlz* **236.1236** (calcd for **C1sImOS** 236.1235). Anal. Calcd for C₁₄H₂₀OS: C, 71.13; H, 8.53; S, 13.57. Found: **C, 71.16; H, 8.74; S, 13.68. '3C NMR (CDCl3)** 6 **201.78,134.79,132.05,128.90,128.86,48.57,**

1-Phenyl-4-(butylthio)-1-octanone $(4, R = R^3 = Bu, R^1 =$ **Ph, R2** = **E).** This compound was identified by **GCMS** only: **GCMS** *mlz* (relative intensity) **292 (M+, 7), 235 (2), 203 (3), 172 (E), 159 (8), 145 (4), 130 (35), 115 (loo), 105 (63).**

5-Eydroxy-l-phenyl-4-(phenylthio)-l-pentanone (4, R = $R^i = Ph$, $R^2 = H$, $R^3 = CH_2OH$). This compound was isolated **as** a liquid: **1H NMR (CDCb)** 6 **1.90-2.04** (m, **1 H), 2.17** (d of penteta, *J* = **4.8, 7.2 Hz, 1 H), 2.46** (br **s, 1 H), 3.16-3.37** (m, **3 H), 3.56-3.69** (m, **2 H), 7.20-7.32** (m, **3 H), 7.39-7.49** (m, **4 H), 7.56** (t, *J* = **7.2 Hz, 1 H), 7.96** (d, *J* = **7.2 Hz, 2 H); 13C NMR 128.03, 127.50, 63.97, 51.76, 35.50, 25.15; HRMS** *mlz* **286.1022** (calcd for $C_{17}H_{18}$ OS 286.1027).
 5-Acetoxy-1-phenyl-4-(phenylthio)-1-pentanone (4, R = (CDCl3) 6 **199.66, 136.66, 133.16, 132.62, 129.06, 128.90, 128.58,**

 $R^1 = Ph, R^2 = H, R^3 = CH_2OAc$. This compound was isolated as a liquid: ¹H NMR (CDCl₃) $δ$ 1.78-1.95 (m, 1 H), 2.01 (s, 3 H), **2.21-2.35(m,1H),3.17-3.48(m,3H),4.11(dd,J=7.8,11.1Hz, 1 H), 4.28** (dd, *J* = **5.4,ll.l Hz, 1 H), 7.20-7.32** (m, **3 H), 7.40-7.50** (m, 4 H), 7.57 (t, J = 7.2 Hz, 1 H), 7.97 (d, J = 7.2 Hz, 2 H); ¹³C **NMR (CDCL) 6 199.17, 170.76, 136.70, 133.56, 133.11, 132.18, 129.03, 128.57, 127.96, 127.36, 66.61, 46.86, 35.55, 25.64, 20.78; HRMS** m/z 328.1130 (calcd for $C_{19}H_{20}O_3$ 328.1133).

1-Phenyl-4-(phenylthio)-5-[(trimethylsilyl)oxy]-1-pen**tanone** (4, $R = R^1 = Ph, R^2 = H, R^3 = CH_2OSiMe_3$). This compound was hydrolyzed to the corresponding alcohol $(4, R^3 = CH_2OH)$ during column chromatography: GCMS m/z (relative intensity) **358 (M+, 0.2), 343 (l), 268 (ll), 249 (2), 233 (5), 159 (loo), 145 (19), 129 (30), 105 (51), 77 (24), 73 (48).**

l-Phenyl-4-(phenylt hio)-5- (trimet hylsily1)- 1-pentanone (4, $R = R^1 = Ph, R^2 = H, R^3 = CH_2SiMe_3$). This compound was isolated **as** a liquid: **'H NMR (CDCL) 6 0.05** *(8,* **9 H), 0.94** (dd, *J* = **8.4,15.0 Hz, 1 H), 1.04** (dd, *J* = **6.6,15.0 Hz, 1 H), 1.80-1.94** (m, **1 H), 2.03-2.16** (m, **1 H), 3.06** (ddd, *J* = **5.4,** $9.0, 17.1$ Hz, 1 H), 3.25 (ddd, $J = 6.3, 9.0, 17.1$ Hz, 1 H), $3.37-3.47$ **2**-(Acetylmethyl)cyclohexanone (10b).⁴⁴ This compound **(m,lH),7.15(t,J=7.2Hz,lH),7.22(t,J=7.2Hz,2H),7.33** (d, *J* = **7.2 Hz, 2 H), 7.39** (t, J = **7.2 Hz, 2 H), 7.50** (t, J = **7.2 Hz, 1 H), 7.88** (d, *J=* **7.2 Hz, 2 H); 13C NMR (CDCL) 6 199.81,136.89, 135.41,132.91,131.73,128.84,128.49,128.00,126.69,45.46,35.23, 31.17,23.57, -0.69; GCMS** *m/z* (relative intensity) **342 (M+, 03, 327 (0.2), 233 (40), 167 (4), 105 (6), 77 (8),73 (100); HRMS** *mlz* 342.1466 (calcd for C₂₀H₂₆OSSi 342.1474).

l-Phenyl-4-(phenylthio)-4-(trimethylsilyl)- 1-butanone (4, $R = R^1 = Ph$, $R^2 = H$, $R^3 = Sime_3$). This compound was isolated **as** an off-white solid, mp **6041 OC: 'H NMR (CDCL)** 6 **0.18** *(8,* **9 H), 1.85-2.01 (m, 1 H), 2.22-2.36** (m, **1 H), 2.63** (dd, *J* = **4.2, 9.0 Hz, 1 H), 3.07** (ddd, *J* = **5.4, 9.0, 17.1 Hz, 1 H), 3.20** (ddd, *J* = **6.3, 9.0, 17.1 Hz, 1 H), 7.08 (t,** *J* = **7.2 Hz, 1 H), 7.19 (t,** J ⁼ **7.2 Hz, 2 H), 7.31-7.42** (m, **4 H), 7.51** (t, *J* = **7.2 Hz, 1 H), 7.80** (d, *J* = **7.2 Hz, 2 H); 13C NMR (CDCh)** 6 **200.05, 138.13, 136.77,** **132.88,129.43,128.81,128.42,127.92,125.82,37.04,34.17,26.27, -2.30; GCMS** *m/z* (relative intensity) **328 fM+, 11, 313 (4), 219 (551,208 (13), 203 (171, 105 (20),77 (16),73 (100); HRMS** *mlz* **328.1321** (calcd for **ClsHuOSSi 328.1317).** Anal. Calcd for **ClauOSSi: C, 69.46; H, 7.36; S, 9.76;** Si, **8.55.** Found **C, 69.55; H, 7.27, S, 8.23; Si, 8.32.**

S-(Phenylthio)-S-(trimethylsilyl)-1-pentanone (4, R = **Ph,** $R¹ = Me$, $R² = H$, $R³ = Sime₃$). This compound was isolated **as** a liquid: **'H NMR (CDCla)** 6 **0.15 (8,9 H), 1.64-1.81** (m, **1 H), 1.95** (8, **3 H), 2.04-2.15** (m, **1 H), 2.46-2.60** (m, **2 H), 2.62-2.75 (m,lH),7.15(t,J=7.2Hz,lH),7.25(t,J=7.5Hz,2H),7.33** (d, **J** = **7.8 Hz, 2 H); 13C NMR (CDCL) 6 208.62, 138.18, 129.32, 128.82, 125.82, 41.67, 33.66, 29.86, 25.50, -2.38; GCMS** *mlz* (relative intensity) **266 (M+, 2), 167 (3), 151 (5), 141 (13), 137 (11), 136 (100), 116 (19), 73 (49); HMRS** *mlz* **266.1158** (calcd for

 $C_{14}H_{22}OSSi$ 266.1161).
4-(Phenylthio)-4-(trimethylsilyl)butanal (4, R = Ph, R¹) $= \mathbb{R}^2 = H$, $\mathbb{R}^3 = \text{SiMe}_3$. This compound was isolated as a liquid: **1H NMR (CDCl3)** 6 **0.15** *(8,* **9 H), 1.75-1.88** (m, **1 H), 2.06-2.20 (m,lH),2.53(dd,J=4.2,8.4Hz,lH),2.55-2.73(m,2H),7.16 (t,J=7.2Hs,lH),7.26(t,J=7.2Hz,2H),7.32(d,J=7.2Hz, 2 H), 9.66** *(8,* **1 H); 13C NMR (CDCL) 6 202.12, 137.63, 129.45,** 128.87; 126.01, 42.39, 33.76, 23.93, -2.35; HRMS m/z 252.1003 (calcd for C₁₃H₂₀OSSi 252.1004).

 $1-Phenyl-1,4-butanedione (8, R¹= Ph, R³= H) (Table II).⁴²$ The reaction mixture was first washed three times with **15%** aqueous NazSzO3 and then three times with aqueous **2 M** HC1, followed by water. After drying the organic layer and evaporation of the solvent, the product was isolated by flash column chromatography using a **955** mixture of hexane and ethyl acetate as eluant: ¹H NMR (CDCl₃) δ 2.93 (t, $J = 6.3$ Hz, 2 H), 3.33 (t, *^J*= **6.3 Hz, 2 H), 7.47** (t, *J* - **7.2 Hz, 2 H), 7.58** It, *J* **7.2 Hz, 1 H), 7.99** (d, **J** = **7.2 Hz, 2 H), 9.90 (8,l H); GCMS** *mlz* (relative intensity) **162 (M+, O), 134 (38), 120 (20), 105 (100),77 (66); CIMS (NHa)** = **163 (MH+).** The **lH NMR** compared favorably with that in the literature. 42

l-Phenyl-4-(phenylthio)-4-phenoxy-l-butanone (4a, R = $R^1 = R^4 = Ph$, $R^3 = H$). This compound was isolated as a solid, mp **69-71 OC: 1H NMR (CDCl3)** 6 **2.38** (q, *J=* **6.9 Hz, 1 H), 2.39 (q,J=6.9Hz,lH),3.23(t,J=6.9Hz,lH),3.24(t,J=6.9Hz, 1 H), 5.61** (t, *J* = **6.6 Hz, 1 H), 6.95-7.03** (m, **3 H), 7.22-7.31** (m, *⁵***H), 7.39-7.47** (m, **4 H), 7.54** (t, *J* = **7.2** *Hz,* **1 H), 7.93** (d, J ⁼**7.2 Hz, 2 H); "C NMR (CDCl3)** 6 **199.00, 156.62,136.68,134.39, 133.09, 131.26, 129.41, 128.79, 128.54, 128.13, 127.94, 121.99, 116,89,84.59,34.69,30.22; CIMS** (NH3,solidsprobe) *mlz* (relative intensity) **366 (M** + **NH4+, E), 255 (M+** - OPh, **loo), 239 (M+** - SPh, **12).**

2-(Benzoylmethyl)cyclohexanone (10c).⁴³ This compound was isolated by flash column chromatography **using** a **955** ratio of hexane and ethyl acetate **as** a solid, mp **42-44 OC: 'H** NMR **(CDCb)** 6 **1.45** (dq, *J* = **3.9, 12.6 Hz, 1 H), 1.58-1.95** (m, **3 H), 2.00-2.27** (m, **2 H), 2.45** (9, J = **4.5 Hz, 2 H), 2.69** (dd, J ⁼**5.7, 17.7 Hz, 1 H), 3.18** (sextet, *J* = **6.3 Hz, 1 H), 3.61** (dd, *J* = **6.6, 17.7 Hz, 1 H), 7.46** (t, J = **7.5 Hz, 2 H), 7.56** (t, *J* **7.5 Hz, 1** H), **7.99** (d, J ⁼**7.2 Hz, 2 H).** The same **lH NMR** was observed for the diketone synthesized by reaction of phenacyl bromide and **N-morpholino-1-cyclohexene: GCMS** *mlz* (relative intensity) **216 (M⁺, 12), 159 (3), 120 (43), 105 (100), 97 (17), 77 (42).**

 2 was isolated as a liquid using hexane (95%) -ethyl acetate (5%) **as** the eluant in flash column chromatography: **'H NMR (CDCL)** ⁶**1.18-1.44** (m, **1 H), 1.53-1.92** (m, **3 H), 2.01-2.18** (m, **3H), 2.20** (8, **3 H), 2.29-2.43** (m, **2 H), 2.89-3.03** (m, **2 H); 13C NMR (CDCL)** 6 **211.40, 207.26, 46.39, 43.14, 41.80, 33.94, 30.43, 27.83, 25.24;** GCMS m/z (relative intensity) 154 (M⁺, 17), 139 (2), 121 (3), 111 **(23), 97 (33), 83 (12),** *55* **(40), 43 (100); HRMS** *mlz* **154.0998** (calcd for $C_9H_{14}O_2$ 154.0994).

⁽⁴²⁾ Larcheveque, M.; **Valetta, G.; Cuvigny, T.** *Tetrahedron* **1979,35, 1745.**

⁽⁴³⁾ Mitani, M.; **Tamada, M.; Uehara, S.; Koyama, K.** *Tetrahedron Lett.* **1984,25,** *2805.*

⁽⁴⁴⁾ Miyashita, M.; Yanami, T.; Yoshikoehi, A. *J. Am. Chem. SOC.* **1976,98,4679.**

2-(Formylmethyl)cyclohexanone (loa),& This compound was isolated **as** a liquid using hexane **(95** %)-ethyl acetate *(5%*) **as** eluant in flash column chromatography: **lH** NMR (CDCl3) **⁶** 1.43 (dq, $J = 3.6$, 12.6 Hz, 1 H), 1.59-1.83 (m, 2 H), 1.84-1.96 (m, **1 H), 2.00-2.50** (m, *5* **H), 2.90-3.03** (m, **2 HI, 9.81** *(8,* **1 H); 13C** NMR (CDCl₃) δ 210.69, 200.68, 45.43, 43.58, 41.71, 33.99, 27.70, **25.20; HRMS** m/z **140.0837** (calcd for $C_8H_{12}O_2$ **140.0837**).

ci~-3-(Benzoylmethyl)-2-(phenylthio)tetrahydropyran (Ilc). This compound was isolated **as** a solid, mp **87-88** OC: **'H** NMR (CDCl3) **6 1.50-1.93** (m, **4 H), 2.79-2.91** (m, **1 H), 2.98** (dd, **J** = **7.2,17.4 Hz, 1 H), 3.25** (dd, **J 6.0,17.4 Hz, 1 H), 3.65-3.75** $(m, 1 H)$, 4.26 (td, $J = 2.7$, 11.4 Hz, 1 H), 5.58 (d, $J = 4.2$ Hz, 1 **H**), 7.15-7.28 (m, 3 H), 7.39-7.50 (m, 4 H), 7.56 (t, $J = 7.2$ Hz, **1H), 7.98 (d, J = 7.2 Hz, 2 H); ¹³C NMR (CDCl₃) δ 198.29, 131.13, 128.80, 128.55, 128.02, 126.69, 90.30, 60.95, 41.81, 36.89, 26.18,** 25.36; CIMS (NH₃, solids probe) m/z (relative intensity) 330 (M for C₁₉H₂₀O₂S: C, 73.03; H, 6.45; S, 10.26. Found: C, 72.91; H, **6.44; S, 10.06.** + **NHd+, 18), 313** (MH+, **14), 203** (M+-SPh, **100).** And. Cdcd

cis-3-(Benzoylmethyl)-2-(butylthio)tetrahydropyran (11d). This compound was isolated as a liquid: ${}^{1}H NMR$ (CDCl₃) δ 0.86 **(t,J=7.2Hz,3H),1.34(sextet,J=7.2Hz,2H),1.47-1.71(m, 6 H), 2.45-2.61** (m, **2 H), 2.70-2.80** (m, **1 H), 2.85** (dd, *J* = **7.2, 17.1 Hz, 1 H), 3.14** (dd, **J** = **6.3, 17.1 Hz, 1 H), 3.55-3.63** (m, **¹ H),4.12** (dt, **J- 2.7,ll.l Hz, 1 H),5.24** (d, **J= 3.9Hz, 1 H),7.44** (t, **J** = **7.2 Hz, 2 H), 7.55** (t, **J** = **7.2 Hz), 7.96** (d, **J** = **7.2 Hz, 2 86.54,60.56,41.52,36.29,31.92,30.14,26.30,25.01,22.00,13.62;** GCMS *mlz* (relative intensity) **203** (M+ - SBu, **83), 185** *(5),* **¹⁷² (IS), 161 (4), 105 (loo), 77 (24);** HRMS *m/z* **292.1497** (calcd for **H);** '3C NMR (CDCl3) 6 **198.59, 137.12, 132.98, 128.59, 127.93,** C₁₇H₂₄O₂S 292.1497).

3-(Acetylmethyl)-2-(phenylthio)tetrahydropyran (1 lb). Two isomers were isolated **as** liquids by column chromatography. Major isomer: ¹H NMR (CDCl₃) δ 1.40-1.56 (m, 1 H), 1.57-1.83 (m, **3 H), 2.15 (s,3 H), 2.45** (dd, **J= 6.0,16.8 Hz, 1 H), 2.57-2.76** (m, **2 H), 3.63-3.72** (m, **1 H), 4.21** (dt, **J** = **3.0,11.4 Hz, 1 H), 5.49 (d,J=3.9Hz,lH),7.20(t,J=7.2Hz,lH),7.27(t,J=7.2Hz,** 2 H , 7.44 (d, $J = 7.2 \text{ Hz}$, 2 H); ¹³C NMR (CDCl₃) δ 206.83, 135.11, **131.04, 128.84, 126.70, 89.84, 60.76, 46.80, 36.42, 30.63, 25.98, 25.30;** GCMS *mlz* (relative intensity) **250** (M+, **0.5), 141 (82), 123 (16), 111 (16), 99 (12), 81 (24), 43 (100);** HRMS *mlz* **250.1026** (calcd for C₁₄H₁₈O₂S 250.1028). Minor isomer: this compound could be isolated in only **70%** purity (contaminated with the major isomer); **'H** NMR (CDCls) **1.30-1.50** (m, **1 H), 1.56-1.73** (m, **3 H), 2.14 (e, 3 H), 2.30-2.38** (m, **1 H), 2.44** (dd, **J= 7416.8** Hz , 1 H), 2.95 (dd, $J = 4.2$, 16.8 Hz, 1 H), 3.50-3.60 (m, 1 H), **4.12-4.21** (m, **1 H), 4.84** (d, **J** = **6.6 Hz, 1 H), 7.19-7.31** (m, **3 H), 7.47** (d, **J** = **7.2 Hz, 2** *H).*

3-(Formylmethyl)-2-(phenylthio)tetrahydropyran (1 la). Two isomers were isolated **as** liquids by column chromatography. Major isomer: **'H** NMR (CDCl3) **6 1.44-1.84** (m, **4 H), 2.44-2.66** (m, **1 H), 2.62-2.79** (m, **2 H), 3.64-3.74** (m, **1 H), 4.23** (dt, *J=* **3.0, 11.4Hz,lH),5.47(d,J=3.9Hz,lH),7.21(t,J=6.9Hz,lH), 7.28** (t, **J** = **6.9 Hz, 2 H), 7.43** (d, **J** = **7.2 Hz, 2 H), 9.77 (e, 1 H);** ¹³C NMR (CDCl₃) δ 206.87, 131.13, 129.01, 128.82, 126.97, 89.39, **65.45,46.75, 35.37, 27.76, 23.66;** GCMS *mlz* (relative intensity) **236** (M+, **0.3), 127 (100), 109 (24), 97 (111, 81 (45);** HRMS *mlz* **236.0873** (calcd for C&e02S **236.0871).** Minor isomer: **'H** NMR (CDC13) **6 1.36-1.48 (m, 1 H), 1.62-1.72** (m, **2 H), 2.02-2.11** (m, **1 H), 2.30-2.42** (m, **1 H), 2.48** (ddd, *J* = **1.8, 7.2, 17.1 Hz, 1 H), 2.93** (ddd, **J= 1.2,5.1,17.1 Hz, 1 H), 3.49-3.59** (m, **1 H), 4.12-4.22** (m, **1 H), 4.81** (d, **J** = **7.2 Hz, 1 H), 7.23-7.34** (m, **3 H), 7.48** (d,

^J= **7.2 Hz, 2 H), 9.75 (8, 1 H);** GCMS *mlz* (relative intensity) **236 (M+, 0.3), 127 (loo), 109 (26), 97 (17), 81 (47).**

l-(Benzoylmethyl)-2,2-bis(phenylthio)cyclohexane (1Sa). This compound was isolated as an oil: ¹H NMR (CDCl₃) δ 1.00-**2.00** (m, **8H), 2.63** (dd, **J= 8.7,15.3 Hz, 1 H), 3.17** (dd, **J= 10.5, 17.7Hz,lH),4.20 (d,J= 17.7 Hz,lH),7.20-7.45** (m,8 **H),7.50** (t, **J** = **7.2 Hz, 2 H), 7.59** (t, *J* = **7.2 Hz, 1 H), 7.81** (d, *J* = **7.8 Hz, 2 H), 8.08** (d, **J= 7.2 Hz, 2 H); "C** NMR (CDCls) 6 **199.33,137.60, 137.51, 137.28, 133.00, 131.30, 129.95, 129.21, 129.10, 128.80, 128.60, 128.54, 128.12, 70.75, 41.38, 40.84, 36.08, 29.10, 25.40,** 22.65. Anal. Calcd for C₂₆H₂₆OS₂: C, 74.41; H, 6.49; S, 15.29. Found: C, **74.15; H, 6.50; S, 16.45.** Compound **16** on hydrolysis with HgCl₂ in CH₃CN (25%) at gentle reflux for 6 h gave 10c.

3-(Benzoylmethyl)-2-(pheny1thio)cyclohexene (17a). This compound was identified by GCMS only because of separation problems: GCMS m/z (relative intensity) 308 $(M⁺, 6)$, 199 (18), **188 (loo), 155 (9), 105 (351, 77 (33).** After separation **of** the thioacetal **16a** by column chromatography from the reaction mixture the inseparable mixture of **17a** and **6a** was hydrolyzed with $HgCl₂$ in $CH₃CN$ (75%)- $H₂O$ (25%) at gentle reflux for 6 h to convert **17a into 1Oc** whose yield was determined by GC.

1-(Benzoylmethyl)-2-(butylthio)-2-(phenylthio)cyclohex**am (16b).** This compound was isolated **as** an inseparable mixture of two diastereomers in approximately a 5:1 ratio: ¹H NMR (CDCl₃) (only peaks of the major isomer are given) δ 0.98 (t, J $= 7.2$ Hz, 3 H), 1.35–1.85 (m, 11 H), 2.05 (br d, $J = 14.4$ Hz, 1 **H), 2.53-2.69** (m, **2 H), 2.79** (dd, **J** = **6.6,8.1** Hz, **1 H), 2.82** (dd, **J** = **6.9, 7.8 Hz, 1 H), 3.06** (dd, **J** = **7.2, 17.4 Hz, 1 H), 4.03** (dd, *^J*= **1.8, 17.4 Hz, 1 H), 7.28-7.60** (m, **8 H), 8.05** (d, J = **7.2 Hz, 2 H);** CIMS (NH3, solids probe) *m/z* (relative intensity) **416** (M **+N&+,1),309(M+-SBu,24),289(M+-SPh, 100).** Compound **15b** on hydrolysis with HgCl₂ in CH₃CN (75%)-H₂O (25%) at gentle reflux for **6** h gave the diketone **1Oc.**

3-(Benzoylmethyl)-2-(butylthio)cyclohexene (17b). This compound was identified by GCMS only due to separation problems: GCMS *m/z* (relative intensity) **288** (M+, **6), 199 (4), 168** *(86),* **112 (loo), 105 (48), 91 (7), 77 (47).**

l-Phenylpent-4-en-l-one (19).& *This* compound was isolated **as** a liquid **'H** NMR (CDCb) **6 2.43-2.48** (m, **2 H), 3.02-3.07** (m, **2 H), 5.00-5.08** (m, **2 H), 5.82-6.00** (m, **2 H), 7.40-7.60** (m, **3 H),** 7.90-8.20 (br d, $J = 7.2$ Hz, 2 H); GCMS m/z (relative intensity) **160** (M+, **2), 115 (l), 105 (loo), 77 (46).** The **lH** NMR compared favorably with that given in the literature.⁴⁶

1-B utoxy-2- (phenyls ulfony1)- 1 - **(pheny1thio)ethane.** This compound was isolated as an oil: **¹H NMR** (CDCI₃) δ 0.85 (t, J = 7.2 Hz, 3 H), 1.27-1.39 (apparent sextet, J = 7.2 Hz, 2 H), 1.27-1.39 **(m,2H),3.30(td, J=6.3,9.OHz,lH),3.88(td, J=6.9,9.0Hz, lH),5.11(dd,J=5.4,6.9Hz,lH),7.25-7.33(m,3H),7.35-7.41** (m, **2 H), 7.51** (t, **J** = **7.5 Hz, 2 H), 7.62** (t, **J** = **7.5 Hz, 1 H), 7.82** $(d, J = 7.2 \text{ Hz}, 2 \text{ H});$ ¹³C NMR (CDCl₃) δ 140.12, 134.46, 133.43, **130.45,129.03,128.92, 128.54, 127.92, 82.09,68.88,62.22,30.91,** 19.15, 13.84; **HRMS** m/z 350.101 (calcd for $C_{18}H_{22}O_5S_2$ 350.1010).

Acknowledgment. Work **was** supported by Grant CHE-8717871 from the National Science Foundation and by the donors of the Petroleum Research Fund, administered by the American Chemical Society.

Supplementary Material Available: IH NMR spectra for **all** new isolated title compounds **(21** pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

⁽⁴⁵⁾ Herman, J. **L.; Kieczykowski, G. R.; Romanet, R. F.; Wepplo, P.** J.; **Schlesinger, R. H.** *Tetrahedron Lett.* **1973, 4711.**

⁽⁴⁶⁾ Negishi, E.: Idacavagi, M. J. *Tetrahedron Lett.* **1979,20,845.**